(Tbers \& Hamilton, 1964); the values for f^{\prime} and $f^{\prime \prime}$ were those of Cromer (1974). The diagram was produced using ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71642 (15 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: DU1052]

References

Alleyne, C. S. \& Thompson, R. C. (1974). Can. J. Chem. 52, 3218-3228.
B. A. Frenz \& Associates, Inc. (1983). SDP-Plus Structure Determination Package. College Station, Texas, USA, and EnrafNonius, Delft, The Netherlands.
Barker, P. J. \& Stobart, S. R. (1980). Inorg. Chim. Acta, 45, L197-L198.
Brown, D. H., Nuttall, R. H., McAvoy, J. \& Sharp, D. W. A. (1966). J. Chem. Soc. A, pp. 892-896.

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Gowda, N. M. N., Naikar, S. B. \& Reddy, G. K. N. (1984). $A d v$. Inorg. Chem. Radiochem. 28, 255-299.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hamm, D. J., Bordner, J. \& Schreiner, A. F. (1973). Inorg. Chim. Acta, 7, 637-641.
Ibers, J. A. (1953). Acta Cryst. 6, 367-368.
Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones, W. C. \& Bull, W. E. (1968). J. Chem. Soc. A, pp. 18491852.

Long, G. J. \& Clarke, P. J. (1978). Inorg. Chem. 17, 1394-1401.
Pradilla, S. J., Chen, H. W., Koknat, F. W. \& Fackler, J. P. (1979). Inorg. Chem. 18, 3519-3522.

Ripan, R. (1924). Chem. Zentralbl. 1, 1649-1650.

Acta Cryst. (1994). C50, 538-540

The Monoclinic Phase
 $\left[\mathrm{Au}_{\mathbf{2}}\left(\mathbf{C}_{\mathbf{2 5}} \mathbf{H}_{\mathbf{2 2}} \mathbf{P}_{\mathbf{2}}\right)_{2}\right] \mathrm{Cl}_{\mathbf{2}} . \mathbf{2} \mathrm{CH}_{\mathbf{3}} \mathbf{C N}$

Lin-Shu Liou, Chao-Pei Liu and Ju-Chun Wang*
Department of Chemistry, Soochow University, Taipei, Taiwan 11102

(Received 22 March 1993; accepted 1 September 1993)

Abstract

$\operatorname{Bis}\left[\mu\right.$-bis(diphenylphosphino) methane- $\left.P, P^{\prime}\right] \operatorname{digold}(\mathrm{I})$ dichloride bis(acetonitrile) solvate, $\left[\mathrm{Au}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22^{-}}\right.\right.$ $\left.\mathrm{P}_{2}\right)_{2} \mathrm{Cl}_{2} .2 \mathrm{CH}_{3} \mathrm{CN}$, crystallized in the monoclinic system. A crystallographic inversion centre lies at the

centre of the molecule. The $\mathrm{Au}-\mathrm{P}$ distances are 2.299 (3) and 2.332 (3) \AA. The $\mathrm{Au} \cdots \mathrm{Cl}$ distance is 2.951 (4) \AA and the $\mathrm{Au} \cdots \mathrm{Au}$ separation is 2.994 (1) \AA. The molecular structure is similar to the previously reported triclinic structure except that a longer $\mathrm{Au} \cdots \mathrm{Cl}$ distance is observed for the present monoclinic structure.

Comment

In recent years, studies of the metal-metal interactions in the $[\mathrm{Au}(\mathrm{dppm}) X]_{2}$ system, where dppm is bis(diphenylphosphino)methane, have increased because of their interesting bonding and luminescent properties (King, Wang, Khan \& Fackler, 1989; Khan, King, Heinrich, Fackler \& Poter, 1989; Wang, Khan \& Fackler, 1989). The structure of $[\mathrm{Au}(\mathrm{dppm}) \mathrm{Cl}]_{2}$ solvated with acetone has been reported in the triclinic system (Schmidbauer,

Fig. 1. Molecular drawing of the title compound with 50% probability displacement ellipsoids for the non-H atoms.

Wohlleben, Schubert, Frank \& Huttner, 1977). In this paper, we report a monoclinic phase crystal structure (space group $P 2_{1} / c$) of $[\mathrm{Au}(\mathrm{dppm}) \mathrm{Cl}]_{2}$, (I), solvated with $\mathrm{CH}_{3} \mathrm{CN}$. The molecular structure is

similar to the triclinic structure. The only significant difference between the two structures is the $\mathrm{Au}-\mathrm{Cl}$ distance, which is 2.951 (4) \AA for the monoclinic structure and 2.771 (4) \AA for the triclinic structure. Fig. 1 shows the molecule and atomic labeling scheme (Sheldrick, 1991).

Experimental

The title compound was synthesized by reacting equimolar amounts of $\mathrm{Au}($ (tht $) \mathrm{Cl}(0.2093 \mathrm{~g}, 0.65 \mathrm{mmol})$, where tht is tetrahydrothiophene (Uson, Laguna \& Laguna, 1989), and bis(diphenylphosphino)methane (dppm; $0.2515 \mathrm{~g}, 0.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under a nitrogen atmosphere for 1 h . The title compound was formed in almost quantitative yield by adding a large amount of diethyl ether to the reaction solution. Crystals suitable for X-ray analysis were grown by slow diffusion of diethyl ether into a toluene/acetonitrile solution of $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right] \mathrm{Cl}_{2}$.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Au}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\right] \mathrm{Cl}_{2} .-} \\
& 2 \mathrm{CH}_{3} \mathrm{CN} \\
& M_{r}=1305.6 \\
& \text { Monoclinic } \\
& P 2_{1} / c \\
& a=12.34(2) \AA \AA \\
& b=19.580(2) \AA \\
& c=11.464(3) \AA \\
& \beta=13.50(2)^{\circ} \\
& V=2540.3(7) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Siemens P4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: empirical (ψ scan)
$T_{\min }=0.092, T_{\text {max }}=$ 0.146

4830 measured reflections 4446 independent reflections 2506 observed reflections [$I>3 \sigma(I)$]
$D_{x}=1.707 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 36 reflections
$\theta=9-14^{\circ}$
$\mu=6.037 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Irregular

$$
\begin{aligned}
& 0.25 \times 0.2 \times 0.2 \mathrm{~mm} \\
& \text { Colorless }
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {int }}=0.0274 \\
& \theta_{\text {max }}=25^{\circ} \\
& h=0 \rightarrow 14 \\
& k=0 \rightarrow 24 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

3 standard reflections monitored every 500 reflections intensity variation: 2\%

Refinement

Refinement on F
$R=0.0362$
$w R=0.0433$
$S=0.61$
2501 reflections
229 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.0026 F^{2}\right]$
$\Delta \rho_{\text {max }}=1.40 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.82 \mathrm{e}^{-3}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Aul	0.10221 (4)	0.04283 (2)	0.08287 (4)	0.0363 (2)
Cl1	0.1656 (3)	0.04996 (16)	-0.1393 (3)	0.0504 (12)
P1	-0.0103 (2)	0.14013 (13)	-0.0035 (3)	0.0320 (10)
P2	0.1937 (2)	-0.04906 (14)	0.2083 (2)	0.0304 (10)
C 1	0.0977 (9)	-0.1251 (5)	0.1759 (9)	0.032 (4)
C12	0.3993 (6)	-0.1289 (4)	0.2877 (6)	0.042 (5)
C13 \dagger	0.5018	-0.1535	0.2787	0.060 (6)
C14	0.5358	-0.1288	0.1842	0.061 (6)
C15	0.4673	-0.0796	0.0986	0.060 (7)
C16	0.3648	-0.0550	0.1076	0.044 (5)
C11	0.3308	-0.0796	0.2021	0.034 (4)
C22	0.1347 (4)	-0.0344 (4)	0.4167 (6)	0.043 (4)
C23	0.1573	-0.0215	0.5439	0.051 (6)
C24	0.2725	-0.0087	0.6307	0.039 (4)
C25	0.3651	-0.0089	0.5902	0.050 (5)
C26	0.3426	-0.0218	0.4630	0.045 (5)
C21	0.2274	-0.0346	0.3762	0.033 (4)
C32	0.1272 (7)	0.2232 (3)	-0.0876 (7)	0.058 (6)
C33	0.1887	0.2828	-0.0890	0.066 (7)
C34	0.1912	0.3370	-0.0092	0.070 (7)
C35	0.1323	0.3317	0.0721	0.064 (7)
C36	0.0709	0.2721	0.0735	0.049 (5)
C31	0.0684	0.2179	-0.0064	0.038 (4)
C42	-0.2025 (7)	0.2130 (4)	0.0011 (6)	0.055 (6)
C43	-0.2819	0.2327	0.0538	0.064 (6)
C44	-0.2736	0.2045	0.1687	0.064 (7)
C45	-0.1858	0.1565	0.2310	0.079 (9)
C46	-0.1064	0.1369	0.1783	0.057 (6)
C41	-0.1147	0.1651	0.0634	0.037 (4)
N1	-0.5446 (18)	0.3304 (10)	-0.127 (2)	0.151 (7)
C3	-0.5770 (18)	0.3447 (10)	-0.233 (2)	0.104 (6)
C2	-0.5979 (19)	0.3561 (11)	-0.360 (2)	0.127 (7)

\dagger An atom whose coordinates do not have e.s.d.'s was refined as part of a rigid group.

Table 2. Selected geometric parameters ($\AA \mathrm{A}^{\circ}$)
$\left.\begin{array}{lclr}\text { Aul } \ldots \text { Au1' } & & 2.994(1) & \text { Aul-P1 }\end{array}\right) 2.332(3)$

The structure was solved by Patterson methods using SHELXTLPlus (Sheldrick, 1991). The C atoms of the phenyl rings were refined as rigid groups (idealized hexagons) using the $A F I X$ command in SHELXTL-Plus. H atoms were placed in idealized positions and included in the structure-factor calculations but were not included in the least-squares calculations.

These studies are supported by the National Science Council (NSC81-0208-H031-001).

Lists of structure factors, anisotropic displacement parameters and H-
atom coordinates have been deposited with the British Library Docu-
ment Supply Centre as Supplementary Publication No. SUP 71682 (20
pp.). Copies may be obtained through The Technical Editor, Interna-
tional Union of Crystallography, 5 Abbey Square, Chester CH1 2HU,
England. [CIF reference: AL1054]

References

Khan, M. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr \& Poter, L. C. (1989). Inorg. Chem. 28, 2150-2154.
King, C., Wang, J. C., Khan, M. N. I. \& Fackler, J. P. Jr (1989). Inorg. Chem. 28, 2145-2149.
Schmidbauer, H., Wohlleben, A., Schubert, U., Frank, A. \& Huttner, G. (1977). Chem. Ber. 110, 2751-2757.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Uson, R., Laguna, A. \& Laguna, M. (1989). Inorg. Synth. 26, 85-91.
Wang, J. C., Khan, M. N. I. \& Fackler, J. P. Jr (1989). Acta Cryst. C45, 1482-1485.

Acta Cryst. (1994). C50, 540-542

Diamminebis[5-methylpyrimidine$\mathbf{2 , 4 (1 H , 3 H})$-dionato($\left.(1-)-N^{3}\right] \operatorname{copper}(I I)$ Trihydrate

Masood Parvez
Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

William J. Birdsall
Department of Chemistry, Albright College, Reading PA 19612, USA
(Received 1 June 1993; accepted 17 September 1993)

Abstract

The Cu atom in $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{NH}_{3}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ has square-planar coordination geometry. The methylpyrimidinedione ligands are trans with respect to each

other, with $\mathrm{Cu}-\mathrm{N}(1)$ and $\mathrm{Cu}-\mathrm{N}(3)$ distances of 2.03 (1) and 1.99 (1) \AA, respectively, while the amine $\mathrm{Cu}-\mathrm{N}$ distances are 2.00 (1) and 1.96 (1) \AA. Both methylpyrimidinedione ligands are essentially planar with their mean planes being inclined at 4.0°. The structure is stabilized by a network of hydrogen bonds involving amino-N and O atoms.

Comment

Reported structures of metal-ion complexes containing neutral uracil or thymine are relatively rare. Coordination of metals to either of the two heterocyclic N atoms, which are protonated at neutral pH , is unlikely; exocyclic $\mathrm{O}(2)$ and $\mathrm{O}(4)$ atoms, however, are available for complexation. Structural examples include bis(uracil)mercury(II) chloride (Carrabine \& Sundaralingam, 1971) and bis(1,3-dimethyluracil)copper(II) chloride (Cartwright, Goodgame, Johns \& Skapski, 1978), with both complexes exhibiting metal binding to the $\mathrm{O}(4)$ atom.

At elevated pH , ring N atoms are deprotonated and thus are available for metal coordination. Complexes containing the monoanion of uracil or thymine include diamminediaquabis(uracilato)nickel(II) (Lumme \& Mutikainen, 1980) and aqua(diethylenetriamine)(thyminato)copper(II) bromide dihydrate (Kistenmacher, Sorrell \& Marzilli, 1975), with metal coordination at $\mathrm{N}(1)$, and triaquabis(uracilato)cadmium(II) (Mutikainen \& Lumme, 1980) and bis(l-methylthyminato)mercury(II) (Kosturko, Folzer \& Stewart, 1974), which exhibit metal binding at $\mathrm{N}(3)$.

Because of the importance of metal complexes of uracil and thymine in nucleic acid processes as well as in the development of anticancer therapies, we have synthesized several new compounds and herein report the crystal structure of the title compound (1).

(1)

There is a possible center of symmetry in the molecule at $0.2652,0.0041,0.8756$, while the three water molecules lie independent of this center and are responsible for the non-centrosymmetric space group. The methylpyrimidinedione ligands and water molecules are hydrogen bonded with $\mathrm{O} \cdots \mathrm{N}$ and $\mathrm{O} \cdots \mathrm{O}$ distances in the range $2.74(1)-2.90(1) \AA$. It is interesting to note that the ammonia N atoms are involved in rather longer hydrogen-bonded interactions [2.91 (1)-3.46 (1) \AA] with O atoms.

